Functional analysis

List 3

Ex 1. Let $K \in L_{2}([0,1] \times[0,1])$. Prove, that operator $T: L_{2}[0,1] \rightarrow L_{2}[0,1]$ defined by the formula

$$
(T x)(s)=\int_{0}^{1} K(s, t) x(t) d t
$$

is continuous.
Ex 2. Let $\mathcal{D}(A)=\left\{x=(x(n)) \in l_{2}: \sum_{n=1}^{\infty}(n x(n))^{2}<\infty\right\}$. Check whether an operator $A: \mathcal{D}(A) \rightarrow l_{2}$ given by the formula

$$
A(x(1), x(2), \ldots)=(x(1), 2 x(2), 3 x(3), \ldots)
$$

is continuous?
Ex 3. Let $\|x\|_{\infty}=\sup _{t \in[0,1]}|x(t)|$ and $\|x\|_{1}=\sup _{t \in[0,1]}|x(t)|+\sup _{t \in[0,1]}\left|x^{\prime}(t)\right|$. Prove that
a) operator $\frac{d}{d t}:\left(C^{(1)}[0,1],\|\cdot\|_{1}\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ is bounded and find its norm.
b) operator $\frac{d}{d t}:\left(C^{(1)}[0,1],\|\cdot\|_{\infty}\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)$ is unbounded.

Ex 4. Find the norm of an operator $A: l_{p} \rightarrow l_{p}$ given by the formula
a) $A x=(x(1), x(2), \ldots, x(n), 0,0, \ldots)$
b) $A x=(x(1), x(3), x(5), x(7), \ldots)$
c) $A x=(x(2), x(3), x(4), \ldots)$
d) $A x=\left(\frac{1}{3} x(1), \frac{1}{3^{2}} x(2), \ldots, \frac{1}{3^{n}} x(n), \ldots\right)$
e) $A x=\left(2 x(1), \frac{9}{4} x(2), \ldots,\left(\frac{n+1}{n}\right)^{n} x(n), \ldots\right)$

Ex 5. Find the norm of functional $T x=\sum_{i=1}^{n} c_{i} x\left(t_{i}\right)$ acting on the space of continous real functions $C[a, b] ; c_{i} \in \mathbb{R}, t_{i} \in[a, b]$. Consider the case when $C[a, b]$ is the space continous complex functions; $c_{i} \in \mathbb{C}, t_{i} \in[a, b]$.

Ex 6. Find a norm of a linear operator $A: C[a, b] \rightarrow C[a, b]$ given by $(A x)(t)=t x(t)$, for $x \in C[a, b]$.
Ex 7. Calculate a norm of a functional $T x=\int_{-1}^{1} t x(t) d t$ in $C[-1,1]$.
Ex 8. Calculate a norm of a functional $T x=\int_{-1}^{1} t x(t) d t$ in $L_{p}(-1,1)$, for $p \in[1, \infty]$.
Ex 9. Find a norm of an operator $(A x)(t)=t x(t)$ where
a) $A: C[-1,1] \rightarrow L_{p}(-1,1), 1 \leq p<\infty$,
b) $A: L_{p}(-1,1) \rightarrow L_{1}(-1,1), 1 \leq p<\infty$,
c) $A: L_{p_{2}}(-1,1) \rightarrow L_{p_{1}}(-1,1), 1 \leq p_{1}<p_{2}<\infty$.

Teaching aids

Definition 1. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces. We say that a map $A: X \rightarrow Y$ is a linear operator if

$$
A(x+y)=A x+A y, \quad A(\lambda x)=\lambda A x
$$

for all $x, y \in X$ and every number λ. We say that A is bounded if there exists a number $M>0$ such that

$$
\|A x\|_{Y} \leq M\|x\|_{X} \quad \text { for all } x \in X
$$

Proposition 2. A linear operator $A: X \rightarrow Y$ is a bounded if and only if it is conitinuous Ex 10. Prove Proposition 2.

Definition 3. If $A: X \rightarrow Y$ is a bounded linear operator we define its norm $\|A\|$ in the following way

$$
\|A\|=\inf \left\{M:\|A x\|_{Y} \leq M\|x\|_{X} \text { for all } x \in X\right\}
$$

Proposition 4. If $A: X \rightarrow Y$ is a bounded operator then

$$
\|A\|=\sup _{\|x\|_{X}=1}\|A x\|_{Y}
$$

Ex 11. Prove Proposition 4.
Ex 12. Show that the set $L(X, Y)$ of all bounded linear operators from X to Y with pointwise operations and operator norm as a norm forms a normed space.

Ex 13. Show that if Y is a Banach space then $L(X, Y)$ is a Banach space.

