Functional analysis List 3

Ex 1. Let $K \in L_2([0,1] \times [0,1])$. Prove, that operator $T: L_2[0,1] \to L_2[0,1]$ defined by the formula

$$(Tx)(s) = \int_0^1 K(s,t)x(t)dt$$

is continuous.

Ex 2. Let $\mathcal{D}(A) = \{x = (x(n)) \in l_2 : \sum_{n=1}^{\infty} (nx(n))^2 < \infty\}$. Check whether an operator $A : \mathcal{D}(A) \to l_2$ given by the formula

$$A(x(1), x(2), \ldots) = (x(1), 2x(2), 3x(3), \ldots)$$

is continuous?

Ex 3. Let $||x||_{\infty} = \sup_{t \in [0,1]} |x(t)|$ and $||x||_1 = \sup_{t \in [0,1]} |x(t)| + \sup_{t \in [0,1]} |x'(t)|$. Prove that

a) operator $\frac{d}{dt}$: $(C^{(1)}[0,1], \|\cdot\|_1) \to (C[0,1], \|\cdot\|_\infty)$ is bounded and find its norm.

b) operator $\frac{d}{dt}$: $(C^{(1)}[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$ is unbounded.

Ex 4. Find the norm of an operator $A : l_p \to l_p$ given by the formula a) Ax = (x(1), x(2), ..., x(n), 0, 0, ...)b) Ax = (x(1), x(3), x(5), x(7), ...)c) Ax = (x(2), x(3), x(4), ...)d) $Ax = (\frac{1}{3}x(1), \frac{1}{3^2}x(2), ..., \frac{1}{3^n}x(n), ...)$ e) $Ax = (2x(1), \frac{9}{4}x(2), ..., (\frac{n+1}{n})^n x(n), ...)$

Ex 5. Find the norm of functional $Tx = \sum_{i=1}^{n} c_i x(t_i)$ acting on the space of continous real functions C[a, b]; $c_i \in \mathbb{R}$, $t_i \in [a, b]$. Consider the case when C[a, b] is the space continous complex functions; $c_i \in \mathbb{C}$, $t_i \in [a, b]$.

Ex 6. Find a norm of a linear operator $A : C[a, b] \to C[a, b]$ given by (Ax)(t) = tx(t), for $x \in C[a, b]$.

Ex 7. Calculate a norm of a functional $Tx = \int_{-1}^{1} tx(t)dt$ in C[-1, 1].

Ex 8. Calculate a norm of a functional $Tx = \int_{-1}^{1} tx(t)dt$ in $L_p(-1,1)$, for $p \in [1,\infty]$.

Ex 9. Find a norm of an operator (Ax)(t) = tx(t) where

- a) $A: C[-1,1] \to L_p(-1,1), \ 1 \le p < \infty,$
- **b)** $A: L_p(-1,1) \to L_1(-1,1), \ 1 \le p < \infty,$
- c) $A: L_{p_2}(-1,1) \to L_{p_1}(-1,1), \ 1 \le p_1 < p_2 < \infty.$

Teaching aids

Definition 1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces. We say that a map $A: X \to Y$ is a *linear operator* if

$$A(x+y) = Ax + Ay, \qquad A(\lambda x) = \lambda Ax$$

for all $x, y \in X$ and every number λ . We say that A is *bounded* if there exists a number M > 0 such that

$$||Ax||_Y \le M ||x||_X \qquad \text{for all } x \in X.$$

Proposition 2. A linear operator $A: X \to Y$ is a bounded if and only if it is conitinuous

Ex 10. Prove Proposition 2.

Definition 3. If $A: X \to Y$ is a bounded linear operator we define its norm ||A|| in the following way

 $||A|| = \inf\{M : ||Ax||_Y \le M ||x||_X \text{ for all } x \in X\}$

Proposition 4. If $A: X \to Y$ is a bounded operator then

$$||A|| = \sup_{||x||_X=1} ||Ax||_Y.$$

Ex 11. Prove Proposition 4.

Ex 12. Show that the set L(X, Y) of all bounded linear operators from X to Y with pointwise operations and operator norm as a norm forms a normed space.

Ex 13. Show that if Y is a Banach space then L(X, Y) is a Banach space.